

NEC's L, S-BAND 4W SPDT SWITCH

UPG2009TB

FEATURES

· LOW INSERTION LOSS:

LINS = 0.25 dB TYP. @ V cont1/2 = 2.8 V/0 V, f = 1.0 GHz LINS = 0.30 dB TYP. @ V cont1/2 = 2.8 V/0 V, f = 2.0 GHz

· HIGH ISOLATION:

 $ISL = 28 \text{ dB TYP.} @ V_{cont1/2} = 2.8 \text{ V/0 V}, f = 2.0 \text{ GHz}$

POWER HANDLING:

Pin (0.1dB) = 34 dBm TYP. @ Vcont1/2 = 2.8 V/0 V, f = 1.0 GHzPin (1.0dB) = 36 dBm TYP. @ Vcont1/2 = 2.8 V/0 V, f = 1.0 GHz

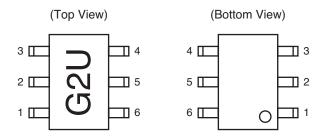
• 6-PIN SUPER MINIMOLD PACKAGE ($2.0 \times 1.25 \times 0.9$ mm)

DESCRIPTION

The UPG2009TB is a L, S-band SPDT (Single Pole Double Throw) GaAs FET switch for digital cellular or cordless telephone application. The device can operate from 500 MHz to 2.5 GHz, with low insertion loss and high isolation.

APPLICATIONS

- · L-band digital cellular or cordless telephone
- Bluetooth[™], W-LAN and WLL applications
- · Short Range Wireless


ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
UPG2009TB-E3	6-pin super minimold	G2U	Embossed tape 8 mm wide Pin 1, 2, 3 face the perforation side of the tape Qty 3 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: UPG2009TB

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

PIN CONNECTIONS

Pin No.	Pin Name
1	OUT1
2	GND
3	OUT2
4	VCont2
5	IN
6 VCont1	

ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Control Voltage 1, 2	Vcont1, 2	-6.0 to +6.0 Note1	V
Input Power	Pin	+36	dBm
Total Power Dissipation	P _{tot}	0.15	mW
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C

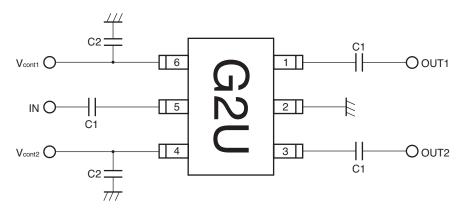
Note $| V_{cont1} - V_{cont2} | \le 6.0 V$

RECOMMENDED OPERATING RANGE (TA = 25°C)

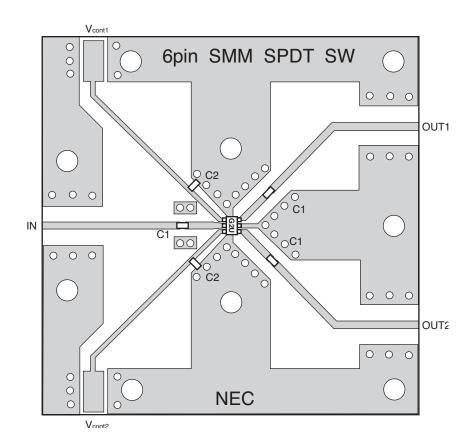
Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Control Voltage (High)	Vcont (H)	+2.7	+2.8	+3.0	V
Control Voltage (Low)	V _{cont (L)}	-0.2	0	+0.2	V

ELECTRICAL CHARACTERISTICS

(TA = +25°C, Vcont1 = 2.8 V, Vcont2 = 0 V or Vcont1 = 0 V, Vcont2 = 2.8, $Z_0 = 50 \Omega$, off chip DC blocking capacitors value; 56 pF, unless otherwise specified)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss	Lins	f = 0.5 to 1.0 GHz	_	0.25	0.45	dB
		f = 2.0 GHz	-	0.30	0.50	dB
		f = 2.5 GHz	_	0.40	-	dB
Isolation	ISL	f = 0.5 to 2.0 GHz	24	28	-	dB
		f = 2.5 GHz	_	25	_	dB
Input Return Loss	RLin	f = 0.5 to 2.5 GHz	15	20	_	dB
Output Return Loss	RLout	f = 0.5 to 2.5 GHz	15	20	-	dB
Input Power at 0.1 dB	Pin(0.1 dB)	f = 1.0 GHz,	32.5	34	_	dBm
Compression Point Note		V _{cont} = 2.8 V/0 V				
2nd Harmonics	2f0	f = 1.0 GHz, V _{cont} = 2.8 V/0 V,	65	75	-	dBc
		Pin = 30.5 dBm				
3rd Harmonics	3f0	f = 1.0 GHz, V _{cont} = 2.8 V/0 V,	65	75	-	dBc
		Pin = 30.5 dBm				
Switching Speed	tsw		-	150	-	ns
Control Current	Icont	V _{cont} = 2.8 V/0 V, RF Non	-	1	50	μΑ

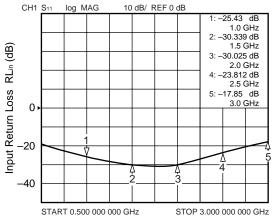
Note Pin (0.1 dB) is the measured input power level when the insertion loss increases 0.1 dB more than that of linear range. All other characteristics are measured in linear range.


Caution It is necessary to use DC blocking capacitors with the device.

The value of DC blocking capacitors should be chosen to accommodate the frequency of operation, bandwidth, switching speed and the condition with actual board of your system. The range of recommended DC blocking capacitor value is less than 100 pF.

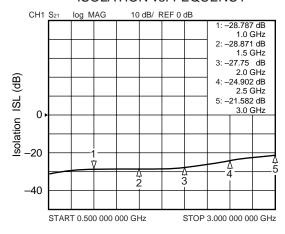
EVALUATION CIRCUIT (Vcont1 = 2.8 V, Vcont2 = 0 V or Vcont2 = 0 V, Vcont1 = 2.8 V, off chip DC blocking capacitors value C1 = 56 pF, C2 = 1 000 pF (Bypass), using NEC standard evaluation board)

EVALUATION BOARD

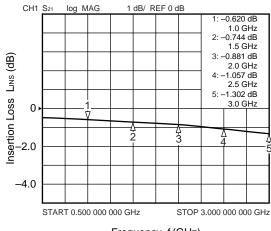

TRUTH TABLE

Vcont1	Vcont2	IN-OUT1	IN-OUT2	
Low	High	OFF	ON	
High	Low	ON	OFF	

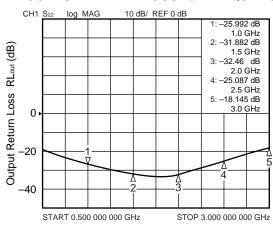
TYPICAL CHARACTERISTICS


(TA = +25°C Vcont1/2 = 2.8 V/0 V, Pin = 0 dBm, OUT2 side is 50 Ω termination)

INPUT RETURN LOSS vs. FREQUENCY


Frequency f(GHz)

ISOLATION vs. FEQUENCY

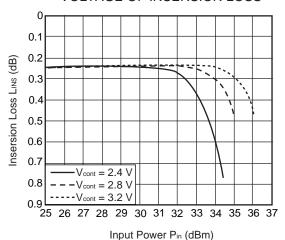

Frequency f(GHz)

INSERTION LOSS vs. FREQUENCY

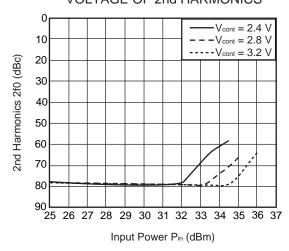
Frequency f(GHz)

OUTPUT RETERN LOSS vs. FREQUENCY

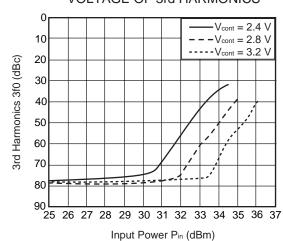
Frequency f(GHz)


Caution These characteristics values include the losses of the NEC evaluation board.

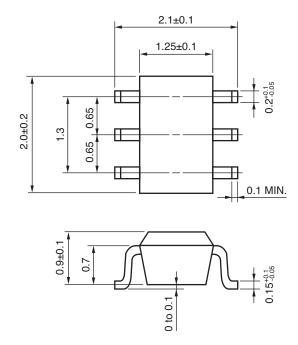
Remark The graphs indicate nominal characteristics.


TYPICAL CHARACTERISTICS

(f = 2 GHz, OUT2 side is 50 Ω termination)


RELATION BETWEEN CONTROL VOLTAGE OF INSERSION LOSS

RELATION BETWEEN CONTROL VOLTAGE OF 2nd HARMONICS


RELATION BETWEEN CONTROL VOLTAGE OF 3rd HARMONICS

Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

California Eastern Laboratories, Your source for NEC RF, Microwave, Optoelectronic, and Fiber Optic Semiconductor Devices.

4590 Patrick Henry Drive • Santa Clara, CA 95054-1817 • (408) 988-3500 • FAX (408) 988-0279 • www.cel.com

DATA SUBJECT TO CHANGE WITHOUT NOTICE

