HP NFメータ 8970A、B の使用方法

NFメータは 周波数ごとの正しいENR値が判っているノイズソースが無いと 測定器として機能しません (本体だけだと 粗大ごみなんですね) 測定時は使用するノイズソースの周波数ごとのENR値をNFメータに登録し その後 キャリブレーションを行うことで AMPなどのNFやゲインが測定出来るように成ります ノイズソースは同じメーカーの同じ型番でも周波数ごとのENR値は異なっています 必ず使用するノイズソースに記載されている数値を個別に入れる必要が有ります 登録したENR値は 電源をOFFしても消える事は有りません しかし 面倒ながらキャリブレーションは電源を入れるたびにやり直す必要が有ります このことはしっかり覚えておいて下さい

本器はコンバータを使用すると 26.5GHzまで測定可能ですが 操作は非常に難しいので コンバータ無で測定可能な 10MHz~1600MHz に限定した使い方の説明を行ないます

以下 ENR値の登録方法 キャリブレーションの方法と 実際のNF測定方法を示します

準備1 ENR値の入力

NFメータの測定結果の信頼性に係わる設定です

本体の電源投入だけでOKです ノイズソースやAMPを接続する必要は有りません

操作手順

 SOURCEの
 ENR
 ボタンを押す

 表示の一番左の周波数の部分のMHzが点滅します

 周波数をMHz単位でキー入力しENTERを押します

 真ん中の表示のENR値のdBが点滅します

 ENR値を入力し
 終ったらENTERを押します

 続いて
 周波数部分が点滅しますので
 を繰り返し測定する周波数全ての値を入れます

 SOURCE
 DATA
 以外の場所のキーを押すと
 ENR設定モードから抜けます

上記操作だと順番に全て入れる事と成ります

設定はたとえば8970Aで全部で27種まで入力出来ます

8970Aは上記手順で入力します 現在何行目を入れているのかは判りません

順次入力や確認は8970Aと同じですが 8970Bはさらに操作が改善されております SOURCEの <u>ENR</u>ボタンを押すと 周波数とそれに対応するENR値が表示されます データテーブルの行Noが一番右の枠に表示されます

FIXD FREQ Ø

で行の移動が出来ますので確認だけの時やの一部の変更の時便利です

ノイズソースは4種 各35データの登録が可能です

使用方法はやや複雑なので割愛いたします

入力した ENR値はNFメータの電源を切っても保持されます

電源を入れるたびに設定する必要は有りません

このENR設定はNF測定に関して非常に重要です

これを行なわなくて CALIBLATEを行い 測定しても以前入力されているENR値により 計算が行なわれ 実際とは全く異なる数字が表示されます

しかも GAINはENR値に関係なく正しく表示されますので NFも合っていそうな 錯覚を起こします

設定しているENR値が違うと その差はストレートにNF値の誤差に成ります

(内部計算上 ENRは0dBが起点でないので-3dBなどの表示が出たりします)
 逆に言うと NF値の判っているAMPがあれば ノイズソースのENR値が逆算できます
 AMPの実NF値より1dB良く出る時は 設定ENR値を1dB上げてやると正しく
 測定値が出るようになります

NFメータに入れているENR値の変更は行なわないで ノイズソースの出力に1dBのATTを 入れて ノイズ量を設定値に合わせる方法でもOKです

ENR値の設定と異なり キャリブレーションはNFメータの電源を入れるたびに行なう 必要が有ります (上写真のようにノイズソースを最短で入力に接続します)

ノイズソースの電源をNFメータの+28V(BNC)に接続する
ノイズソースの出力をNFメータのINPUT端子に直接接続します
測定したい周波数範囲を指定します
SWEEPの START FRQ を押し 数値を入れ ENTER
STOP FRQ を押し 数値を入れ ENTER
STEP SIZE を押し 数値を入れ ENTER
MEASUREMENTの NF AND GAIN を押す (LEDが移動します)
CALIBRATE を押す
CAL動作を始めます しばらく時間が必要です

SWEEP範囲は下は10MHz 上はNFメータの上限周波数で良いと思います

上限周波数は 8970A,Bの場合 1600MHz、1800MHz、2045MHz と 3種類有ります

設定値は電源を入れた際は前回の数値が繁栄されますので確認だけで良いでしょう

準備1の周波数ごとのENR値を入れます (1度設定すれば電源を切っても記憶されています) 準備2のキャリブレーションを行ないます (電源投入時 毎回必要です)

ノイズソース出力を 測定するAMPの入力へ AMP出力を NFメータのINPUTへ 接続します 測定したい周波数を FIXD FREQの FREQENCY を押し MHz単位の数値を入れ ENTERを押します GAIN と NFが表示されます

測定上の注意点

ENR値とは 自然ノイズ - 174dBm/Hzに対するレベル差を言います NFメータは ノイズソースの電源をON/OFFさせて AMPの出力レベルの計測し NF値を計算しています キャリプレーションは ノイズソースのENR値の誤差などを校正してくれる機能では 有りません あくまで ノイズソースから来ているレベルがENRテープルに書かれている値として これを基に GAINとNFを計算します ノイズソース直結で キャリプレーション直後は GAIN=0dB NF=0dB と表示されるはずです

実際のENR値と 入力しているENR値に誤差があると 測定値はそのまま誤差の有る 数字を表示しますので ノイズソースの正しいENR値が非常に重要です

* 1.0 d B 以下のN F 測定や 0.1 d B 単位の精度を必要とする場合は キャリブレーション直後での目的周波数でN F 値が0 d B に成る様 さらに E N R 値 を修正すれば誤差を補正出来ます (G A I N 値のずれが出ますが無視します)

キャリブレーション時 測定時共に ノイズソース出力にケーブルや変換コネクタを 取付けた場合 それらの挿入損失はそのまま NFやGAINの誤差として現れます 測定された数値から ロス分を補正するか 登録するENR値をロス分を補正して登録する か どちらかが必要に成ります

いちいちこれを行なうのは無駄ですから 極力ロスが無いよう接続するのが賢明です

AMPゲインが10dB以上なら 入力側を最短距離で接続しのロスを極力少なくします AMP出力からNFメータの入力までは少しくらいロスが生じても NFの測定への影響は 微小ですので 入力側を優先します 一般的ノイズソースの仕様

電源電圧	+ 2 8 V B N C での供給が一般的
ノイズレベル	ENR=7dB か ENR=15dB が一般的
	8970Bは ENR=7dBを使えない機種も有るようです
出力コネクター	N-オス SMA-オス 等
周波数	10MHz ~ 18GHz
	10MHz ~ 26.5GHz
	8 G H z ~ 4 0 G H z
	N F メータで直接測定できるのは
	8970では 1600MHzか1800MHz
	又は2045MHzまでです
	この当たりまでしか使用しない場合 周波数が伸びていること事態

価格が高いだけで何のメリットも有りません

1600MHz(1800MHz)を超えての測定にはコンバーターや高い周波数の出る SGが必要です

接続方法や設定の方法は本体下部に引き出し式の簡易マニュアルが有ります

スペシャルファンクションの設定等あり かなり面倒です

詳しいマニュアルはアジレントのホームページからダウンロード出来ます (英文) 使いこなされている方は少ないと思われますが ノイズソースは何故か 18GHzまで 伸びているタイプに人気が有ります ^^)

以上 基本的な使い方と注意点をあげました 眠っている測定器を活用されるよう望みます AMPのNF改善テクニック

NFメータを使う目的は 既製品のNF測定確認と AMPを設計する場合のS/N改善定数を 探す為かと思います

通常 AMPは信号レベルの高い所で使う場合は 50 マッチングさせるようにネットアナの スミスチャートなど見ながら行ないますが 受信機のTOPアンプなどゲインよりもS/Nの良い 特性が必要な場合などがありますね

50 系で有ってもアンプのNF最良点は50 マッチング点でない事が判っております どのポイントが最良点かは デバイスごとに異なっていますのでポイントを探す事になります

一般的には スミスチャートの中心よりやや上の部分に有るようです ゲインが余り下がらないで NFも我慢できる値になる点を探すことになります

NF最良点となる入力負荷インピーダンス

メーカ提供のデータ

Γ_{ort}, F_{min}, R_n/50(雑音抵抗)

NE3210S01

入力負荷インピーダンスをどこに合わせる?

型名 NF ゲイン 周波数

NE334S01 << 今回の発表で9GHz以下で業界最低NF

N F	Gain	周波数
0.23dB	17.0dB	2.0GHz
0.28dB	14.7dB	6.0GHz
0.38dB	12.5dB	10.0GHz

NE325S01 << NE32984D の一つ前のデバイス

N F	Gain	周波数
0.40dB	13.6dB	10.0GHz
0.45dB	12.5dB	12.0GHz

参考値

NE32984D << 12GHzで業界最低NF

N F	Gain	周波数
0.29dB	20.0dB	2.0GHz
0.31dB	16.5dB	6.0GHz
0.37dB	13.6dB	10.0GHz
0.40dB	12.5dB	12.0GHz

これらのデバイスで特筆すべきことは、 OPT がスミスチャートの真ん中により近いと ころにあることです。これはノイズ性能を最良の点に調整することが楽になるばかりで なく、マッチング回路による損失がスミスチャートの外周に近いところにあるデバイス に比べて、より少なくなるということです。これはより低NFを追求するEMEなどの 用途や、NFコンテストで一等賞をねらおうなどと考えている場合には大変重要な点で す。ちなみに OPTはNE32984D が

Mag	Angle	周波数
0.85	20°	2.0GHz
0.68	63°	6.0GHz
0.56	111°	10.0GHz
0.52	137°	12.0GHz

NE332984D

に対して

Mag	Angle	周波数
0.77	15°	2.0GHz
0.43	82°	6.0GHz
0.27	175°	10.0GHz
0.27	-139°	12.0GHz

NE334S01

NE329S01

Mag	Angle	周波数
0.36	102°	10.0GHz
0.27	139°	12.0GHz

これを見ても分かる方に、たとえばNE334S01は10GHzでは0.27/175°と ほとんどスミスチャートの中心に近く、極端にいえば50オームラインに直接載せて何 もマッチングを取らなくても十分低NFなアンプが実現できるのではないか、というこ とです。これはシミュレータでちゃんとデータを入れてやって検討しなければ正確なこ とはいえませんんが、かなりのせんが出そうです。データシートには Constant Noise Circleは4GHzのデータしか載っていませんが、4GHzでさえもセンターで0.7dB 程度は出ています。

なぜNE334S01の低域での特性がいいのでしょうか?それはゲート幅のデザインがKuバンド用のデバイスと違うせいです。NE334S01のゲートは280ミクロン幅に対し、NE329,NE325は200ミクロンを採用しています。一般的にゲート幅が長いとより低周波向け、短いと高域の特性が向上するという傾向があります。 NECは以前からゲート幅の長いCバンド用HEMTを開発してきました(NE332)。NE334S01はそのラインの最先端デバイスです。

当局はNE32984Dにより10GHzで0.6dB ていどは得られていますから、同程 度は簡単に出そうです。問題は入力コネクターと結合コンデンサによるロスをいかに小 さくするかでしょう。

なお価格ですが、これら2点のデバイスは1000個、4000個単位での受注になっています。なんとか100個単位で入手しましたが、それぞれ350円でした。今後のことはどうなるか分かりませんが、かなりの交渉を必要としました。1000個単位で買えば、あと100円くらいは下がるでしょう。何といっても価格の安いプラスチックパッケージなのですから。